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The performance of a 10-GHz balanced FET FMCW transceiver h. Ring Electrons
been investigated and compared with a similar unbalanced transcei\ Cathode
The FETs in the transceiver are operated simultaneously as amplifiElectronic
and FET resistive mixers. This circumvents the need for separation t
tween the transmitted and received signals, thus making it suitable -
integration in MMIC technology.

The use of a balanced circuit topology improves the AM noise pe
formance by typically 20 dB. The output power is 14 dBm at 7-dBn = Isolator l | Fv]
input power. Similar to the unbalanced transceiver, the balanced circ
is very robust against bias variations.
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Fig. 1. Experimental gyro-amplifier device with a ferroelectric cathode.
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The first microwave oscillator using a ferroelectric cathode was
demonstrated in our previous study [18], [19]. In the present experi-
ment, the ferroelectric cathode serves as a hollow electron-beam source

A Microwave Gyro Amplifier With a Ferroelectric Cathode in a CRM gyro-traveling-wave tube (TWT) amplifier experiment.
) ) ) This CRM amplifier, operating in the fundamental gyrotron mode [20]

Moshe Einat, Eli Jerby, and Gil Rosenman near the cutoff frequency of the circular waveguide, tolerates the wide

electron energy spread of the ferroelectric cathode. Demonstration of

Abstract—A ferroelectric cathode is employed for the first time as the such a mlcrqwave amplifier may mOtIYate the development of various

electron-beam source in a microwave amplifier tube. A PLZT 12/65/35 fer- |0W-cost devices based on ferroelectric cathodes.

roelectric ceramic with a high dielectric constant(e, ~ 4000) is used in

aform of a hollow cathode. The tube is operated in poor vacuum conditions Il. EXPERIMENTAL SETUP

(2 x 10~° Torr) at room temperature, in a mechanism of a cyclotron-reso-

nance maser amplifier. The device operates near the waveguide cutoff fre-  The experimental device is shown in Fig. 1. It is comprised of an
quency at 6927 MHz. A 22-dB electronic gain and a 25-W output power are electron-gun section, a CRM interaction region, and a collector sec-
measured in this experiment. tion. The electron gun is based on a ferroelectric ring cathode made

Index Terms—Cold-cathode tubes, electron emission, electron guns, fer- on a 10x 10 x 1 mnt PLZT 12/65/35 ceramic plate [7]. The contact

roelectric materials, gyrotrons. is made by silver paint at the rear (nonemitting) side of the ferroelec-
tric plate. In the front (emitting) side, the electrode is made of a stain-
less-steel grid, in a ring shape of 5 and 8 mm inner and outer diame
ters, respectively. A metallic electrode covers the inner circle of the ring
The electron gun and, more specifically, the cathode, are kewrface. The rear electrode is activated by a positive pulseldtV,
elements in the design of any microwave tube [1]. In particulax0.25.s, where the front side is grounded. The first accelerating elec-
trode is placed 5 mm in front of the cathode emitting side. This elec-
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TABLE |
EXPERIMENTAL PARAMETERS

Experimental Parameters

=
Waveguide ‘,E'
[
Diameter 26 [mm] S
Interaction length 400 [mm]

Electron beam

Emitting voltage 1 [kV]
Accelerating voltage 8.5-12.5 [kV] 0.2
Beam current 0.1-0.4 [A]
. 2 15 (b)
Pulse width 0.25 [us] _0.15
3
=3
Magnetic field ~2.5 kG] ]
£ © 0.1
Pitch ratio (v, /v;) ~4 %
°
Q0.
Amplified signal 2005
i
Frequency 6,927 [MHz] 0 A mrunetemtd
Electronic gain 22 [dB] 0 0.25 Tim%s tus] 0.75 1

Output power:
Fig. 2. Typical CRM experimental run with the ferooelectric cathode.

beam off 0.16 (W] (a) Current pulse measured at the collector. (b) Amplified microwave signal.
beam on 25 [W]
Electronic efficiency 1-2% A solenoid generates the axial2.5 kG magnetic field. A short
(small signal) kicker coil induces a strong gradient in the magnetic field; thus, the

electrons acquire a transverse velocity component. A pitch ratio of
vy /v, = 4 (wherevy andv. are the transverse and axial electron
Two significant limitations of the ferroelectric cathode are the develelocity components, respectively), as calculated by the EGUN simu-
opment of voltage breakdowns and the electrons’ relatively large vation code [21], was needed to obtain a reasonable amplification. The
locity spread, both due to the plasma involved in the emission procesathode, solenoid, and kicker geometries were determined according
The electron gun is designed to overcome plasma breakdown problémghe simulation results. The cylindrical waveguide is located inside
by several means. The electrons are emitted and pulled out of the e solenoid, whereas the collector is outside the solenoid bore. The
roelectric ceramic by a relatively low-voltage pulsel(kV) simulta- electron-beam current is measured by a Rogovsky coil.
neously with the short trigger pulse. The electrons are then acceleratedhe diagnostic section is comprised of attenuators, a power divider,
to the required energy~(10 keV) by the accelerating anode. Breaka spectrum analyzer, and a calibrated crystal detedtardB). The
downs between the cathode and anode are not developed becauseutrit voltage of the crystal detector is traced by an oscilloscope. The
grid electrode in the middle is grounded immediately after the pulsgpectrum analyzer is operated in a zero-span mode for the input signal
Also, the energy spread of the electrons is limited by the emission dsequency (6927 MHz) with a 3-MHz bandpass filter. The video signal
tracting voltage from the cathode. The two-stage accelerator enablegetected by the spectrum analyzer is also traced on the oscilloscope.
extract the electron at a low voltage and, therefore, with a low energ§ycold measurement of the transmission through the device (without
spread (determined only by the first stage). Since the main acceleratio@ electron beam) indicates a 10-dB transmission loss (i.e., the 1.6-W
is obtained by a dc voltage separated from the cathode, this voltage atinuous wave (CW) microwave signal at 6927 MHz injected into the
thus, the acceleration, are stable during the current pulse. Hence,dheice appears as a 0.16-W signal at the output). Table | summarizes
energy spread is reduced to an acceptable level for the gyrotron intée experimental parameters.
action. Without this separating arrangement, no signals were obtained.
The CRM interaction section is made of a copper cylindrical
waveguide (26-mm diameter). The input microwave signal is fed by
a coaxial transmission line. The operating waveguide modfis; . A typical run of the CRM amplifier with a ferroelectric cathode is
The output is terminated to a horn tapered to a WR-90 rectanguRiesented in Fig. 2(a) and (b). The current pulse emitted by the ferro-
waveguide. The waveguide is connected to the high dc voltage, whiggctric cathode is shown in Fig. 2(a), as measured at the collector for
accelerates the electrons at the entrance to the tube. In the colledtbaccelerating dc voltage of 12.5 kV, and an axial magnetic field of
section, the rectangular waveguide is connected to the same poteialkG (the current loss and reflection were not measured). Since the
as the waveguide. The microwave output is fed through a dc blocketectron emission is a plasma-assisted effect, the current pulse is not
microwave attenuators and diagnostic elements. The electron-besssmooth as obtained from a thermionic cathode. The amplified mi-
current is dumped and measured in the collector section. crowave signal, at a frequency of 6927 MHz, is presented in Fig. 2(b).

IIl. EXPERIMENTAL RESULTS
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Fig. 4. CRM absorption measured in a slight off-tuning CRM operating
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The output signal level measured without the electron beam is 22-d

CW. During the current pulse, the output signal increases to 44 dB
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IV. CONCLUSIONS

This experiment demonstrates the firstimplementation ever reported
of a ferroelectric cathode in any microwave amplifier tube. The CRM
amplifier yielded a 22-dB amplification and a 25-W output power at
6927 MHz in a 0.25:s pulse. A verification of the CRM amplifica-
tion (rather than oscillations) was done by a spectrum analyzer tuned
to the input signal frequency. Measurements at the CRM operating fre-
quencyw = w. + k-v. and at slight and large deviations from it, ver-
ified the amplification mechanism as a CRM, operating in a gyro-am-
plifier mode, near the waveguide cutoff frequency. The Doppler shift
measured~80 MHz) coincides with the axial velocityof =2 0.05¢,
wherec is the speed of light) for the calculated pitch ratio/v. = 4.

The theoretical gain curve in Fig. 3 was calculated by a linear CRM
gain equation [22] for a cold electron beam. The electron-beam current
in this calculation, i.e., 0.1 A, is smaller than measured in the collector
in order to compensate for the cold electron-beam model. The calcula-
din for 6927-MHz and 12.5-kV accelerating voltage results in a max-
imum gain of~25 dB without including the electron energy spread.
The theoretical gain curve resembles the experimental results shown in
Fig. 3, whereas the pitch ratio of_ /v. = 4 found by an electron tra-
jectory simulation is verified. The smaller gain in the experiment can
be attributed to the electron-beam spread.

The practical CRM device might be limited, however, by the known
ferroelectric cathode restrictions, i.e., only a short pulse operation is
available and the repetition rate is limited, as well as the lifetime of
the cathode [23]. Considering these limitations, in view of the advan-
tages, it seems that the ferroelectric cathode can fit into a new niche
of low-cost microwave devices operating in short pulses for a limited
lifetime. This understanding leads us to the new concept of disposable
microwave tubes [24].
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A Novel Tap Input Coupling Structure for a Narrow II. INPUT COUPLING
Bandpass Filter UsingTMg10 Mode of a
Microstrip Circular-Disk Resonator A microstrip disk resonator is a circular conducting disk patterned
onto a dielectric substrate with a ground plane on the opposite side.
Kenneth S. K. Yeo and Michael J. Lancaster The tap input coupling can be easily achieved by making a via

through the dielectric substrate and ground plane to the patterned

disk resonator. However, for a high-temperature superconductor thin

Abstract—This paper discusses a new method to couple into tHEM 10 film, which grows on a single crystal substrate, i.e., magnesium oxide
mode of a microstrip circular-disk resonator. This method can achieve rea- (MgO), lanthanum—-aluminate (LaAlQ, or sapphire, making a via

sonably strong input coupling, which is useful for narrow-band filters with . . .
fractional bandwidths of approximately 0.5% and above. A comparison be- through the ground plane cannot be easily achieved. For this case,

tween this newly proposed input coupling structure and the conventional the tap input can only be achieved by making a notch into the disk
gap input coupling structure will be addressed. A decision threshold for resonator and inserting the 5Dfeed line into the disk, as shown in
using either the tap input or the conventional gap-coupled input s also ex- Fig. 1(a).
gﬁ:gﬁgg Ei(rﬂi;mg ?gzsglgisg:tessg:]{zg?ter fabricated using this novel input The externaQ factors of the ipput feed can be varied by changing
the tap locatiorl” along the radius of the disk. The current distribu-
Index Terms—Disk resonator, filter, HTS. tion flows radially with the minimum at the center and the edge of the
disk and the peak at about one-half the radius. A plot of the normalized
current distribution is shown in Fig. 2. This plot is based upon the theo-
retical model for the field equations [6] of the microstrip circular-disk
The TMo10 mode of a microstrip circular-disk resonator is a veryesonator. TheX - andY -axes are normalized to the radifisof the
promising structure for high-power high-temperature superconductggk.
bandpass filters because of its edge-free current distribution [1]. Thisthe externaly factor of the new tap input structure is simulated
paper presents a new input coupling structure foriihé,.o mode of  ysingem Sonnet [7]. To make comparison between the new tap input
and the conventional gap coupled, a similar structure is also simulated,
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